
Understanding the Performance of Hybrid
(distributed/shared memory) Programming Model

http://www.mcs.anl.gov/petsc-fun3d

William Gropp, Argonne National Laboratory

Dinesh Kaushik, Argonne National Laboratory & ODU

David Keyes, Old Dominion University, LLNL & ICASE

Barry Smith, Argonne National Laboratory

ODU CS Colloquium Feb 8, 2001

Organization of the Presentation
• Background of Message Passing (MPI)

• Background of Shared Memory Model (OpenMP)

• Bottlenecks to Parallel Scalability

• Adapting to the hybrid (MPI/OpenMP) programming
model

• Conclusions and Future Work

ODU CS Colloquium

Parallel Computing
What is it?

• Parallel computing is the use of concurrency in
program either to:
¾ decrease the runtime for the solution to a problem.
¾ Increase the size of the problem that can be solved.

Parallel Computing gives you
more performance to throw

at your problems.

ODU CS Colloquium

Parallel Computing:
Writing a parallel application.

Original Problem
Tasks, shared and local data

Decompose
into tasks

Code with a
parallel Prog. Env.

Corresponding source code

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int N = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N,DATA);
for (int I= 0; I<N;I=I+Num){

tmp = func(I);
Res.accumulate(tmp);

}
}

Program SPMD_Emb_Par ()
{

TYPE *tmp, *func();
global_array Data(TYPE);
global_array Res(TYPE);
int Num = get_num_procs();
int id = get_proc_id();
if (id==0) setup_problem(N, Data);
for (int I= ID; I<N;I=I+Num){

tmp = func(I, Data);
Res.accumulate(tmp);

}
}

Grou
p o

nto

exe
cut

ion
 un

its.

Units of execution + new shared data
for extracted dependencies

ODU CS Colloquium Feb 8, 2001

Types of Parallel Computing Models
• Data Parallel - the same instructions are carried out

simultaneously on multiple data items (SIMD)
• Task Parallel - different instructions on different data

(MIMD)
• SPMD (single program, multiple data) not

synchronized at individual operation level
• SPMD is equivalent to MIMD since each MIMD

program can be made SPMD (similarly for SIMD, but
not in practical sense.)

Message passing (and MPI) is for MIMD/SPMD
parallelism. HPF is an example of an SIMD interface.

ODU CS Colloquium

What is message passing?

• Data transfer plus synchronization

l Requires cooperation of sender and receiver

DataProcess 0

Process 1

May I Send?

Yes

Data
Data

Data
Data

Data
Data

Data
Data

Time

ODU CS Colloquium Feb 8, 2001

What is MPI?

• A message-passing library specification
¾ extended message-passing model

¾ not a language or compiler specification

¾ not a specific implementation or product

• For parallel computers, clusters, and heterogeneous networks

• Full-featured

• Designed to provide access to advanced parallel hardware for
¾ end users

¾ library writers

¾ tool developers

ODU CS Colloquium Feb 8, 2001

Why Use MPI?
• MPI provides a powerful, efficient, and portable way

to express parallel programs

• MPI was explicitly designed to enable libraries…

• … which may eliminate the need for many users to
learn (much of) MPI

ODU CS Colloquium Feb 8, 2001

A Minimal MPI Program (C)
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
printf("Hello, world!\n");
MPI_Finalize();
return 0;

}

ODU CS Colloquium

OpenMP: Introduction

omp_set_lock(lck)

#pragma omp parallel for private(A, B)

#pragma omp critical

C$OMP parallel do shared(a, b, c)

C$OMP PARALLEL REDUCTION (+: A, B)

call OMP_INIT_LOCK (ilok)

call omp_test_lock(jlok)

setenv OMP_SCHEDULE “dynamic”

CALL OMP_SET_NUM_THREADS(10)

C$OMP DO lastprivate(XX)

C$OMP ORDERED

C$OMP SINGLE PRIVATE(X)

C$OMP SECTIONS

C$OMP MASTERC$OMP ATOMIC

C$OMP FLUSH

C$OMP PARALLEL DO ORDERED PRIVATE (A, B, C)

C$OMP THREADPRIVATE(/ABC/)

C$OMP PARALLEL COPYIN(/blk/)

Nthrds = OMP_GET_NUM_PROCS()

!$OMP BARRIER

OpenMP: An API for Writing Multithreaded Applications

¨ A set of compiler directives and library routines for parallel
application programmers

¨ Makes it easy to create multi-threaded (MT) programs in Fortran,
C and C++

¨ Standardizes last 15 years of SMP practice

OpenMP: An API for Writing Multithreaded Applications

¨ A set of compiler directives and library routines for parallel
application programmers

¨ Makes it easy to create multi-threaded (MT) programs in Fortran,
C and C++

¨ Standardizes last 15 years of SMP practice

ODU CS Colloquium

OpenMP: Programming Model

Fork-Join Parallelism:
uMaster thread spawns a team of threads as needed.

uParallelism is added incrementally: i.e. the
sequential program evolves into a parallel program.

Parallel Regions

Master
Thread

ODU CS Colloquium Feb 8, 2001

OpenMP: How OpenMP is typically used?
• OpenMP is usually used to parallelize loops:

¨ Find your most time consuming loops.
¨ Split them up between threads.

Parallel ProgramSequential Program

void main()
{

double Res[1000];

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

void main()
{

double Res[1000];
#pragma omp parallel for

for(int i=0;i<1000;i++) {
do_huge_comp(Res[i]);

}
}

Split-up this loop between
multiple threads
Split-up this loop between
multiple threads

ODU CS Colloquium Feb 8, 2001

OpenMP: The Good
• Effective Incremental Parallelism

¾ Important contributor to ASCI Red results (not exactly
OpenMP, but same philosophy)

• Good SMP and SMP-cluster match
¾ Larger domain decomposition blocks

¾ Dynamic load balance

ODU CS Colloquium Feb 8, 2001

OpenMP: The Not so Good
• Performance

¾ In apples-to-apples comparison with MPI

¾ Data placement important

¾ Cache blocking etc. mismatch with OpenMP loop
scheduling

• Restrictions on atomic update/reduce
¾ No vector reduce (p 29) (but see OpenMP 2.0)

¾ Complexity for user comes from exceptions and
limitations

ODU CS Colloquium Feb 8, 2001

OpenMP: The Bad
• Program correctness

¾ It is too easy to write incorrect programs

• Software Modularity
¾ At best 2-level modularity

¾ Many modern algorithms built out of components; how
will OpenMP support them?

¾ E.g., each component uses limited parallelism to fit
problem into local caches; application uses task
parallelism to perform intelligent (not exhaustive
parameter-space search) design optimization.

ODU CS Colloquium Feb 8, 2001

Software Modularity

• Libraries must either
¾ Use OpenMP at “leaves” (e.g., the loop-level), or
¾ Take complete control (user program has no OpenMP parallelism when library is

called).
¾ But some libraries call other library routines …

¨ E.g., should BLAS use OpenMP? LAPACK? What if user uses OpenMP for task parallelism for a
routine that calls an LAPACK routine?

• Using OpenMP at loop-level incurs startup costs
¾ Some vendors suggest

¨ Program Main
!omp parallel
…
!omp end parallel
stop
end

• OpenMP language bindings poorly chosen for mixed-language programming
¾ I.e., programs that use libraries …

ODU CS Colloquium Feb 8, 2001

Language Bindings for Mixed Language
Programming

• Libraries used by Fortran may be written in C (and
vice versa)
¾ OpenMP naming convention can make this (nearly)

impossible

• C names should always be distinguishable from
Fortran names
¾ Unless bindings are identical

¾ Using mixed case for C (as in MPI) is an easy way to do
this

ODU CS Colloquium Feb 8, 2001

Performance Issues for OpenMP
• Overhead of thread management

• Redundant storage and work

• Sequential reduction phase, which tend to be memory
bandwidth bound

• Simplicity goes away when user takes care of memory
updates (similar to MPI model)

ODU CS Colloquium Feb 8, 2001

Hardware Architecture
Cluster of SMPSMP Symmetric Multi-Processor

cpu cpu

Fast Interconnect

Memory (shared)

•2-128 processors circa late 90’s 40 - 4000 circa 90’s
•Memory shared Memory physically distributed
•High-powered Processors and High-Powered Micros (Alpha, PowerPC)
Micros (some vector, mostly micro)
•SMP means equal access including I/O
•Sometimes term is generalized to mean
Shared Memory Parallel

Interconnect (varies)

Mem

cpu cpu

Mem

cpu cpu

ODU CS Colloquium Feb 8, 2001

Motivation for Hybrid Model
• Given

¾ a scalable MPI based code

• Goal
¾ use hybrid model to achieve better performance than MPI alone

• Methodology:
¾ assign one subdomain to one MPI process

¾ use OpenMP with in a subdomain that gets mapped to a node (with 2 or
more processors)

• Advantage
¾ take advantage of shared memory programming within a subdomain

¾ results in bigger subdomains as more than one thread can work on a
subdomain as compared to pure MPI case

ODU CS Colloquium Feb 8, 2001

Our View of the Hybrid Model
• MPI Extreme

¾ the user manages the memory updates

• OpenMP Extreme
¾ the system manages the memory updates

• Hybrid MPI/OpenMP
¾ Some memory updates are managed by the user and the

rest by the system

ODU CS Colloquium Feb 8, 2001

Competing for the Available Memory Bandwidth

• The processors on a node compete for the available
memory bandwidth

• The computational phases that are memory-bandwidth
limited will not scale
¾ They may even run slower because of the extra

synchronizations

ODU CS Colloquium Feb 8, 2001

Stream Benchmark on ASCI Red
MB/s for the Triad Operation

1521571E07

1411451E06

1441401E05

2381375E04

12966661E04

2 Threads1 ThreadVector Size

ODU CS Colloquium Feb 8, 2001

Primary PDE Solution Kernels
• Vertex-based loops

¾ state vector and auxiliary vector updates

• Edge-based “stencil op” loops

¾ residual evaluation

¾ approximate Jacobian evaluation

¾ Jacobian-vector product (often replaced with matrix-free form,
involving residual evaluation)

• Sparse, narrow-band recurrences

¾ approximate factorization and back substitution

• Vector inner products and norms

¾ orthogonalization/conjugation

¾ convergence progress and stability checks

ODU CS Colloquium Feb 8, 2001

Features of PETSc-FUN3D
• Based on “legacy” (but contemporary) CFD application

with significant F77 code reuse
• Portable, message-passing library-based parallelization, run

on NT boxes through Tflop/s ASCI platforms
• Simple multithreaded extension (for SMP Clusters)
• Sparse, unstructured data, implying memory indirection

with only modest reuse
• Wide applicability to other implicitly discretized multiple-

scale PDE workloads - of interagency, interdisciplinary
interest

• Extensive profiling has led to follow-on algorithmic
research

ODU CS Colloquium Feb 8, 2001

Flux Evaluation in PETSc-FUN3D

ODU CS Colloquium Feb 8, 2001

Key Features of Implementation Strategy
• Follow the “owner computes” rule under the dual constraints of

minimizing the number of messages and overlapping communication
with computation

• Each processor “ghosts” its stencil dependences in its neighbors

• Ghost nodes ordered after contiguous owned nodes

• Domain mapped from (user) global ordering into local orderings

• Scatter/gather operations created between local sequential vectors and
global distributed vectors, based on runtime connectivity patterns

• Newton-Krylov-Schwarz operations translated into local tasks and
communication tasks

• Profiling used to help eliminate performance bugs in communication
and memory hierarchy

ODU CS Colloquium Feb 8, 2001

Factoring out the Parallel Performance
• Implementation Scalability

¾ Problem constrained scalability

¾ Memory constrained scalability

• Algorithmic Scalability
¾ Degrades as the number of processors increase

• Per-processor Performance
¾ Needs attention to the memory hierarchy

ODU CS Colloquium Feb 8, 2001

MPI: Parallel Performance on ASCI Red
ONERA M6 Wing Test Case, Tetrahedral grid of 2.8 million vertices

(about 11 million unknowns) on up to 3072 ASCI Red Nodes (each with
dual Pentium Pro 333 MHz processors)

ImplementationAlgorithmicOverall

0.53

0.61

0.70

0.80

1.00

Parallel Efficiency

0.820.6512.81159343072

0.890.699.78208322048

5.63

3.20

1.00

Speedup

0.940.8563826512

0.930.76362291024

1.001.002,03922128

Time in

seconds
IterNodes

ODU CS Colloquium Feb 8, 2001

MPI: Scalability Bottlenecks on ASCI Red

4.614.2101453072

5.711.781132048

6

5

3

Ghost

Point

Scatters

6.07.173512

7.59.41031024

6.93.645128

Application

Level Effective

Bandwidth per

Node (MB/s)

Total Data

Sent per

Iteration

(GB)

Implicit

Synchro-

nizations

Global
Reduc-

tions

Scatter ScalabilityPercentage Times for

Nodes

ODU CS Colloquium Feb 8, 2001

Hybrid Model: Implementation Issues

• Data Distribution
¾ False sharing

¾ Cache locality

• Work Division
¾ Compiler or User

¾ Static or dynamic

• Updates of the Shared Data
¾ Private data but initialization and reductions are memory

bandwidth bound

¾ Shared data but updates need to be synchronized

ODU CS Colloquium Feb 8, 2001

Hybrid Model: Three Implementation Strategies
• Edge Coloring

¾ Poor cache locality
¾ Compiler divides the work
¾ Updates are independent

• Edge Reordering
¾ Excellent cache locality
¾ Compiler divides work
¾ Updates are a problem

• Manual Work Division
¾ Each MPI process calls MeTiS to further subdivide the work among

threads
¾ Boundary data is replicated for each thread
¾ “Owner computes” rule is applied for every thread

ODU CS Colloquium Feb 8, 2001

Edge Coloring

1 2
3 4
7 8
2 6
1 5
2 3
6 8
4 5
3 6

1 2
2 6
3 4
1 5
2 3
4 5
7 8
6 8
3 6

ODU CS Colloquium Feb 8, 2001

Edge Reordering

1 2
1 5
2 6
2 3
3 4
3 6
4 5
6 8
7 8

1 2
2 6
3 4
1 5
2 3
4 5
7 8
6 8
3 6

ODU CS Colloquium Feb 8, 2001

TLB Misses:
Measured Values on Origin

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

Log scale!

ODU CS Colloquium Feb 8, 2001

Secondary Cache Misses:
Measured Values on Origin

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

Base NOER Interlacing NOER Blocking NOER
Base Interlacing Blocking

ODU CS Colloquium Feb 8, 2001

MPI/OpenMP in PETSc-FUN3D
• Only in the flux evaluation phase, as it is not memory bandwidth bound

• Gives the best execution time as the number of nodes increases
because the subdomains are chunkier as compared to pure MPI case

63

109

293

MeTiS

Divided

1161301361831024

626391933072

314423332510256

Edge
Reordering

Edge
Coloring

21

MPI/OpenMP

2 Threads Per Node

MPI Processes

Per Node
Nodes

ODU CS Colloquium Feb 8, 2001

Conclusions

• OpenMP provides good support for incremental
parallelism; however, needs attention to allow for software
modularity, mixed language programming etc.

• Hybrid MPI/OpenMP achieves good overall performance
but should be used only in the phases that are not memory
bandwidth limited
¾ Results in bigger subdomains

¨ Faster convergence rate

¨ Less network transactions

ODU CS Colloquium Feb 8, 2001

Acknowledgments
• Accelerated Strategic Computing Initiative, DOE

¾ access to ASCI Red and Blue machines

• National Energy Research Scientific Computing Center
(NERSC), DOE
¾ access to large T3E

• SGI-Cray
¾ access to large T3E

• National Science Foundation
¾ research sponsorship under Multidisciplinary Computing

Challenges Program

• U. S. Department of Education
¾ graduate fellowship support for D. Kaushik

ODU CS Colloquium Feb 8, 2001

Related URLs
• Follow-up on this talk

http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• FUN3D
http://fmad-www.larc.nasa.gov/~wanderso/Fun

• ASCI platforms
http://www.llnl.gov/asci/platforms

• International Conferences on Domain Decomposition
Methods

http://www.ddm.org

• International Conferences on Parallel CFD
http://www.parcfd.org

